Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 20
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Study on plutonium burner high temperature gas-cooled reactor in Japan; Introduction scenario, reactor safety and fabrication tests of the 3S-TRISO fuel

Ueta, Shohei; Mizuta, Naoki; Fukaya, Yuji; Goto, Minoru; Tachibana, Yukio; Honda, Masaki*; Saiki, Yohei*; Takahashi, Masashi*; Ohira, Koichi*; Nakano, Masaaki*; et al.

Nuclear Engineering and Design, 357, p.110419_1 - 110419_10, 2020/02

 Times Cited Count:1 Percentile:11.8(Nuclear Science & Technology)

The concept of a plutonium (Pu) burner HTGR is proposed to incarnate highly-effective Pu utilization by its inherent safety features. The security and safety fuel (3S-TRISO fuel) employs the coated fuel particle with a fuel kernel made of plutonium dioxide (PuO$$_{2}$$) and yttria stabilized zirconia (YSZ) as an inert matrix. This paper presents feasibility study of Pu burner HTGR and R&D on the 3S-TRISO fuel.

JAEA Reports

Code-B-2.5.2 for stress calculation for SiC-TRISO fuel particle

Aihara, Jun; Goto, Minoru; Ueta, Shohei; Tachibana, Yukio

JAEA-Data/Code 2019-018, 22 Pages, 2020/01

JAEA-Data-Code-2019-018.pdf:1.39MB

Concept of Pu-burner high temperature gas-cooled reactor (HTGR) was proposed for purpose of more safely reducing amount of recovered Pu. In Pu-burner HTGR concept, coated fuel particle (CFP), with ZrC coated yttria stabilized zirconia (YSZ) containing PuO$$_{2}$$ (PuO$$_{2}$$-YSZ) small particle and with tri-structural isotropic (TRISO) coating, is employed for very high burn-up and high nuclear proliferation resistance. ZrC layer is oxygen getter. On the other hand, we have developed Code-B-2.5.2 for prediction of pressure vessel failure probabilities of SiC-tri-isotropic (TRISO) coated fuel particles for HTGRs under operation by modification of an existing code, Code-B-2. The main purpose of modification is preparation of applying code for CFPs of Pu-burner HTGR. In this report, basic formulae are described.

Journal Articles

Development of security and safety fuel for Pu-burner HTGR, 2; Design study of fuel and reactor core

Goto, Minoru; Ueta, Shohei; Aihara, Jun; Inaba, Yoshitomo; Fukaya, Yuji; Tachibana, Yukio; Okamoto, Koji*

Proceedings of 25th International Conference on Nuclear Engineering (ICONE-25) (CD-ROM), 6 Pages, 2017/07

A PuO$$_{2}$$-YSZ fuel kernel with a ZrC coating, which enhances safety, security and safeguard, namely: 3S-TRISO fuel, was proposed to introduce to the plutonium-burner HTGR. In this study, the efficiency of the ZrC coating as the free-oxygen getter was examined based on a thermochemical calculation. A preliminary study on the feasibility of the 3S-TRISO fuel was conducted focusing on the internal pressure. Additionally, a nuclear feasibility of the reactor core was studied. As a result, all the amount of the free-oxygen is captured by a thin ZrC coating under 1600$$^{circ}$$C and coating ZrC on the fuel kernel should be very effective method to suppress the internal pressure. The internal pressure of the 3S-TRISO fuel at 500 GWd/t is lower than that of UO$$_{2}$$ kernel TRISO fuel whose feasibility had been already confirmed and the 3S-TRISO fuel should be feasible. The fuel shuffling allows to achieve 500 GWd/t. The temperature coefficient of reactivity is negative during the operation period and thus the nuclear feasibility of the reactor core should be achievable.

Journal Articles

Irradiation test and post irradiation examination of the high burnup HTGR fuel

Ueta, Shohei; Aihara, Jun; Shaimerdenov, A.*; Dyussambayev, D.*; Gizatulin, S.*; Chakrov, P.*; Sakaba, Nariaki

Proceedings of 8th International Topical Meeting on High Temperature Reactor Technology (HTR 2016) (CD-ROM), p.246 - 252, 2016/11

In order to examine irradiation performance of the new Tri-structural Isotropic (TRISO) fuel for the High Temperature Gas-cooled Reactor (HTGR) at the burnup around 100 GWd/t, a capsule irradiation test was conducted by WWR-K research reactor in the Institute of Nuclear Physics (INP) of Kazakhstan. The irradiated TRISO fuel was designed by Japan Atomic Energy Agency (JAEA) and fabricated in basis of the HTTR fuel technology in Japan. The fractional release of fission gas from the fuel during the irradiation shows good agreement with the predicted one released from as-fabricated failed TRISO fuel. It was suggested that unexpected additional fuel failure would not occur during the irradiation up to 100 GWd/t. In addition, the post-irradiation examination (PIE) with the irradiated fuel is planned to qualify TRISO fuel integrity and upgrade HTGR fuel design for further burnup extension.

Journal Articles

Conceptual study of a plutonium burner high temperature gas-cooled reactor with high nuclear proliferation resistance

Goto, Minoru; Demachi, Kazuyuki*; Ueta, Shohei; Nakano, Masaaki*; Honda, Masaki*; Tachibana, Yukio; Inaba, Yoshitomo; Aihara, Jun; Fukaya, Yuji; Tsuji, Nobumasa*; et al.

Proceedings of 21st International Conference & Exhibition; Nuclear Fuel Cycle for a Low-Carbon Future (GLOBAL 2015) (USB Flash Drive), p.507 - 513, 2015/09

A concept of a plutonium burner HTGR named as Clean Burn, which has a high nuclear proliferation resistance, had been proposed by Japan Atomic Energy Agency. In addition to the high nuclear proliferation resistance, in order to enhance the safety, we propose to introduce PuO$$_{2}$$-YSZ TRISO fuel with ZrC coating to the Clean Burn. In this study, we conduct fabrication tests aiming to establish the basic technologies for fabrication of PuO$$_{2}$$-YSZ TRISO fuel with ZrC coating. Additionally, we conduct a quantitative evaluation of the security for the safety, a design of the fuel and the reactor core, and a safety evaluation for the Clean Burn to confirm the feasibility. This study is conducted by The University of Tokyo, Japan Atomic Energy Agency, Fuji Electric Co., Ltd., and Nuclear Fuel Industries, Ltd. It was started in FY2014 and will be completed in FY2017, and the first year of the implementation was on schedule.

Journal Articles

Irradiation performance of HTGR fuel in WWR-K research reactor

Ueta, Shohei; Shaimerdenov, A.*; Gizatulin, S.*; Chekushina, L.*; Honda, Masaki*; Takahashi, Masashi*; Kitagawa, Kenichi*; Chakrov, P.*; Sakaba, Nariaki

Proceedings of 7th International Topical Meeting on High Temperature Reactor Technology (HTR 2014) (USB Flash Drive), 7 Pages, 2014/10

A capsule irradiation test with the high temperature gas-cooled reactor (HTGR) fuel is being carried out using WWR-K research reactor in the Institute of Nuclear Physics of the Republic of Kazakhstan (INP) to attain 100 GWd/t-U of burnup under normal operating condition of a practical small-sized HTGR. This is the first HTGR fuel irradiation test for INP in Kazakhstan collaborated with Japan Atomic Energy Agency (JAEA) in frame of International Science and Technology Center (ISTC) project. In the test, TRISO coated fuel particle with low-enriched UO$$_{2}$$ (less than 10% of $$^{235}$$U) is used, which was newly designed by JAEA to extend burnup up to 100 GWd/t-U comparing with that of the HTTR (33 GWd/t-U). Both TRISO and fuel compact as the irradiation test specimen were fabricated in basis of the HTTR fuel technology by Nuclear Fuel Industries, Ltd. in Japan. A helium-gas-swept capsule and a swept-gas sampling device installed in WWR-K were designed and constructed by INP. The irradiation test has been started in October 2012 and will be completed up to the end of February 2015. The irradiation test is in the progress up to 69 GWd/t of burnup, and integrity of new TRISO fuel has been confirmed. In addition, as predicted by the fuel design, fission gas release was observed due to additional failure of as-fabricated SiC-defective fuel.

Journal Articles

R&D plan for development of oxidation-resistant graphite and investigation of oxidation behavior of SiC coated fuel particle to enhance safety of HTGR

Ueta, Shohei; Sumita, Junya; Shibata, Taiju; Aihara, Jun; Fujita, Ichiro*; Ohashi, Jun*; Nagaishi, Yoshihide*; Muto, Takenori*; Sawa, Kazuhiro; Sakaba, Nariaki

Nuclear Engineering and Design, 271, p.309 - 313, 2014/05

 Times Cited Count:9 Percentile:57.01(Nuclear Science & Technology)

A new concept of the high temperature gas-cooled reactor (HTGR) is proposed as a challenge to assure no event sequences to the harmful release of radioactive materials even when the design extension conditions (DECs) occur by deterministic approach based on the inherent safety features of the HTGR. The air/water ingress accident, one of the DECs for the HTGR, is prevented by additional measures (e.g. facility for suppression to air ingress). With regard to the core design, it is important to prevent recriticality accidents by keeping the geometry of the fuel rod which consists of the graphite sleeve, fuel compact and SiC-TRISO (TRIstructural-ISOtropic) coated fuel particle, and by improving the oxidation resistance of the graphite when air/water ingress accidents occur. Therefore, it is planned to develop the oxidation-resistant graphite, which is coated with gradient SiC layer. It is also planned that the experimental identification of the condition to form the stable oxide layer (SiO$$_{2}$$) for SiC layer on the oxidation-resistant graphite and on the SiC-TRISO fuel. This paper describes the R&D plan for un-irradiation and irradiation test under simulating air/water ingress accident condition to develop oxidation-resistant graphite and to investigate the oxidation behavior of SiC coated fuel particle.

Journal Articles

Reprocessing technologies of the High Temperature Gas-cooled Reactor (HTGR) fuel

Sumita, Junya; Ueta, Shohei; Kunitomi, Kazuhiko; Yoshimuta, Shigeharu*; Sawa, Kazuhiro

Nihon Genshiryoku Gakkai Wabun Rombunshi, 2(4), p.546 - 554, 2003/12

A High Temperature Gas-Cooled Reactor (HTGR) is particularly attractive due to capability of producing high temperature helium gas and its inherent safety characteristic. Research and development of high temperature gas turbine plant and high temperature heat utilizing technology are now undergoing. The High Temperature Engineering Test Reactor (HTTR) is a research facility constructed by the Japan Atomic Energy Research Institute. This paper describes reprocessing technology of HTGR fuels. Coated fuel particles, consisted of a microsphere of low enriched UO$$_{2}$$ with TRISO particles, are used as the HTGR fuels. In order to reprocess HTGR fuels, a head-end process is needed and JAERI had confirmed jet-grind method as basic technologies of the head-end process. Since Purex method can be used after the head-end process, a reprocessing system for the HTGR fuels could be established. Also the preliminary study on the methodology for disposing graphite blocks in a HTGR was carried out, and its evaluation results were briefly presented.

Journal Articles

Internal release of metallic fission products in (Th,U)O$$_{2}$$ coated particle fuel

Akabori, Mitsuo; Fukuda, Kosaku

Journal of Nuclear Materials, 183, p.70 - 75, 1991/00

 Times Cited Count:5 Percentile:53.87(Materials Science, Multidisciplinary)

no abstracts in English

Journal Articles

Development of HTGR coated particle fuels and its subjects

Nihon Genshiryoku Gakkai-Shi, 28(4), p.312 - 317, 1986/00

 Times Cited Count:0 Percentile:0.02(Nuclear Science & Technology)

no abstracts in English

JAEA Reports

Release of Metal Fission Products from Coated Particle Fuel (Sweep-Gas Capsules 74F9J,75F4A,and 75F5A)

; ; ; Tobita, Tsutomu; ; ; ; ; ; Iwamoto, K.; et al.

JAERI-M 85-041, 48 Pages, 1985/03

JAERI-M-85-041.pdf:1.33MB

no abstracts in English

Journal Articles

Research and development of ZrC-coated UO$$_{2}$$ particle fuel in Japan Atomic Energy Research Institute

; Ikawa, Katsuichi; ; ; Iwamoto, K.

Nuclear Fuel Performance, p.163 - 169, 1985/00

no abstracts in English

JAEA Reports

Electron Probe Micro-Analysis of Irradiated Triso-Coated UO$$_{2}$$ Particles, I

; Minato, Kazuo; ; Ikawa, Katsuichi

JAERI-M 83-200, 34 Pages, 1983/11

JAERI-M-83-200.pdf:1.37MB

no abstracts in English

Journal Articles

Diffusion of metal fission products in ZrC$$_{1}$$$$_{.}$$$$_{0}$$

; Ikawa, Katsuichi

Journal of Nuclear Materials, 105, p.331 - 334, 1982/00

 Times Cited Count:29 Percentile:98.08(Materials Science, Multidisciplinary)

no abstracts in English

Journal Articles

Release behavior of gaseous fission product from coated fuel particles under irradiation

; ; ; Ikawa, Katsuichi; Iwamoto, K.; Yamamoto, Katsumune

Journal of Nuclear Science and Technology, 19(11), p.889 - 902, 1982/00

 Times Cited Count:2 Percentile:32.87(Nuclear Science & Technology)

no abstracts in English

JAEA Reports

Irradiation Behaviors of Coated Fuel Particles(IV) (Irradiation by JMTR 73F-12A Capsule)

; ; ; Ikawa, Katsuichi; Iwamoto, K.;

JAERI-M 9644, 50 Pages, 1981/09

JAERI-M-9644.pdf:5.12MB

no abstracts in English

Journal Articles

High-temperature heating experiments on unirradiated ZrC-coated fuel particles

; Ikawa, Katsuichi

Journal of Nuclear Materials, 99(1), p.85 - 93, 1981/00

 Times Cited Count:22 Percentile:90.03(Materials Science, Multidisciplinary)

no abstracts in English

JAEA Reports

Studies on irradiation behaviors of coated particle fuels

; Iwamoto, K.; Ikawa, Katsuichi

JAERI-M 9071, 50 Pages, 1980/08

JAERI-M-9071.pdf:1.91MB

no abstracts in English

Oral presentation

Design of high burnup fuel for HTGR

Sasaki, Koei

no journal, , 

"Design of high burnup fuel for HTGR" was instructed for "3rd Seminar on Development of HTGR Technology for Cogeneration and Heat Applications" as a part of "Implementing Agreement between the Japan Atomic Energy Agency and National Centre for Nuclear Research in the Republic of Poland for cooperation in research and development in the field of high temperature gas-cooled reactor technologies".

Oral presentation

Evaluation of diffused and retained actinide inventory in SiC layer in HTGR spent fuel

Sasaki, Koei; Fukaya, Yuji; Tachibana, Yukio; Sawa, Kazuhiro*

no journal, , 

In order to quantitatively clarify whether the diffused actinide in the SiC layer in the spent fuel can be a critical factor of the low recovery rate in the entire HTGR fuel reprocessing, the amount of diffused actinide in the SiC layer was calculated in the case of GTHTR300 fuel based on the elemental analysis data of post irradiation examinations. As a result, it was found that the amount was below the recovery loss reduction target of 0.1% for environmental load reduction.

20 (Records 1-20 displayed on this page)
  • 1